⚛️
Quantum Chemistry
VQE algorithms with uncertainty quantification for quantum computing research
Quantum Chemistry with Sounio
Sounio provides tools for quantum chemistry simulations with built-in uncertainty quantification for variational quantum algorithms.
Quantum Computing Challenges
Quantum computations are inherently probabilistic:
- Shot noise from finite measurements
- Gate errors and decoherence
- Variational parameter optimization
- Hardware calibration uncertainty
Sounio’s epistemic types naturally model these uncertainties.
Variational Quantum Eigensolver
use std::quantum::{Circuit, Hamiltonian, Qubit}
use std::epistemic::{Knowledge, measure}
fn vqe_iteration(
hamiltonian: &Hamiltonian,
ansatz: &Circuit,
params: Vec<f64>,
shots: i32
) -> Knowledge<f64> with Quantum {
// Prepare parameterized circuit
let circuit = ansatz.bind(params)
// Measure expectation value with shot noise
let measurements = (0..shots).map(|_| {
let state = circuit.execute()
hamiltonian.expectation(state)
})
// Result includes statistical uncertainty
Knowledge {
value: measurements.mean(),
uncertainty: measurements.std_dev() / (shots as f64).sqrt(),
confidence: confidence_from_shots(shots),
provenance: vec!["vqe_measurement"],
}
}
Confidence-Gated Optimization
fn optimize_vqe(
hamiltonian: &Hamiltonian,
ansatz: &Circuit,
initial_params: Vec<f64>
) -> OptimizationResult with Quantum, IO {
var params = initial_params
var energy = vqe_iteration(hamiltonian, ansatz, params, 1000)
loop {
let gradient = estimate_gradient(hamiltonian, ansatz, params)
// Only update if gradient is confident
if gradient.confidence > 0.90 {
params = params - learning_rate * gradient.value
let new_energy = vqe_iteration(hamiltonian, ansatz, params, 1000)
// Check convergence with uncertainty
if (energy.value - new_energy.value).abs() < energy.uncertainty {
return OptimizationResult {
energy: new_energy,
params: params,
converged: true,
}
}
energy = new_energy
} else {
// Need more shots for reliable gradient
perform IO::log("Increasing shots for gradient estimation")
gradient = estimate_gradient(hamiltonian, ansatz, params, shots: 10000)
}
}
}
Molecular Simulation
use std::chemistry::{Molecule, basis_set}
fn compute_ground_state(
molecule: Molecule
) -> Knowledge<Hartree> with Quantum, IO {
// Build molecular Hamiltonian
let hamiltonian = molecule.hamiltonian(basis_set::STO3G)
// Map to qubit representation
let qubit_hamiltonian = jordan_wigner(hamiltonian)
// Hardware-efficient ansatz
let ansatz = hardware_efficient_ansatz(
n_qubits: qubit_hamiltonian.n_qubits(),
depth: 3,
)
// Run VQE
let result = optimize_vqe(qubit_hamiltonian, ansatz, random_initial())
perform IO::log(
"Ground state energy: " + result.energy.to_string() +
" (confidence: " + result.energy.confidence.to_string() + ")"
)
result.energy
}
Error Mitigation
fn mitigated_expectation(
circuit: &Circuit,
observable: &Observable,
calibration: &NoiseCalibration
) -> Knowledge<f64> with Quantum {
// Zero-noise extrapolation
let noise_levels = vec![1.0, 1.5, 2.0]
var results = vec![]
for scale in noise_levels {
let scaled_circuit = scale_noise(circuit, scale)
let result = measure_expectation(scaled_circuit, observable)
results.push((scale, result))
}
// Extrapolate to zero noise
let mitigated = richardson_extrapolation(results)
// Combine measurement and extrapolation uncertainty
Knowledge {
value: mitigated.value,
uncertainty: (
mitigated.measurement_uncertainty.pow(2) +
mitigated.extrapolation_uncertainty.pow(2)
).sqrt(),
confidence: mitigated.confidence,
provenance: vec!["zne_mitigated"],
}
}
Features for Quantum Chemistry
- Shot noise modeling: Automatic uncertainty from finite samples
- Gate error tracking: Propagate hardware imperfections
- Optimizer integration: Confidence-aware parameter updates
- Error mitigation: Built-in ZNE and other techniques
- Backend agnostic: Works with simulators and real hardware
Supported Platforms
- IBM Qiskit integration
- Google Cirq support
- Amazon Braket compatibility
- Local simulators
Get Started
sounio new quantum-project --template quantum-chemistry
cd quantum-project
sounio run examples/h2_vqe.sio